Securing the Future Against Quantum Threats
Explore cryptographic systems that remain secure against both classical and quantum computer attacks. Learn about NIST-standardized algorithms, lattice-based cryptography, and quantum-resistant protocols.
Cryptographically relevant quantum computers may emerge within 10-15 years
Shor's algorithm can efficiently factor large integers and solve discrete logarithm problems, breaking RSA, ECDSA, and Diffie-Hellman key exchange.
Grover's algorithm provides quadratic speedup for unstructured search, effectively halving the security level of symmetric cryptographic primitives.
Current estimates suggest cryptographically relevant quantum computers may emerge within 10-15 years, requiring immediate preparation.
Various attack models including "harvest now, decrypt later" where encrypted data is stored today for future quantum decryption.
NIST announces post-quantum cryptography standardization process.
NIST publishes FIPS 203 (Kyber), FIPS 204 (Dilithium), FIPS 205 (SPHINCS+).
Major vendors begin implementing PQC algorithms in products and services.
Dual-use classical and post-quantum algorithms for backward compatibility.
Complete transition to post-quantum cryptography across all systems.
Cryptographically relevant quantum computers emerge; PQC provides protection.
# Using pqcrypto library for Kyber
from pqcrypto.kem.kyber512 import generate_keypair, encrypt, decrypt
import os
# Generate key pair
public_key, secret_key = generate_keypair()
print(f"Public key size: {len(public_key)} bytes")
print(f"Secret key size: {len(secret_key)} bytes")
# Key encapsulation
ciphertext, shared_secret = encrypt(public_key)
print(f"Ciphertext size: {len(ciphertext)} bytes")
print(f"Shared secret: {shared_secret.hex()}")
# Key decapsulation
decrypted_secret = decrypt(secret_key, ciphertext)
# Verify shared secrets match
assert shared_secret == decrypted_secret
print("✅ Key exchange successful!")
# Dilithium digital signature example
from pqcrypto.sign.dilithium2 import generate_keypair, sign, verify
# Generate signing key pair
public_key, secret_key = generate_keypair()
# Message to sign
message = b"This is a post-quantum secure message"
# Create digital signature
signature = sign(secret_key, message)
print(f"Message: {message.decode()}")
print(f"Signature size: {len(signature)} bytes")
# Verify signature
try:
verify(public_key, message, signature)
print("✅ Signature verification successful!")
except:
print("❌ Signature verification failed!")
# Demonstrate security
tampered_message = b"This is a tampered message"
try:
verify(public_key, tampered_message, signature)
print("❌ This should not happen!")
except:
print("✅ Tampered message correctly rejected")
# Hybrid approach using both RSA and Kyber
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import hashes, serialization
from pqcrypto.kem.kyber512 import generate_keypair as kyber_keygen
from pqcrypto.kem.kyber512 import encrypt as kyber_encrypt
import os
class HybridKEM:
def __init__(self):
# Generate RSA key pair (classical)
self.rsa_private = rsa.generate_private_key(
public_exponent=65537,
key_size=2048
)
self.rsa_public = self.rsa_private.public_key()
# Generate Kyber key pair (post-quantum)
self.kyber_public, self.kyber_private = kyber_keygen()
def encapsulate(self):
"""Hybrid key encapsulation using both RSA and Kyber"""
# Classical component
rsa_secret = os.urandom(32)
rsa_ciphertext = self.rsa_public.encrypt(
rsa_secret,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
# Post-quantum component
kyber_ciphertext, kyber_secret = kyber_encrypt(self.kyber_public)
# Combine secrets using KDF
combined_secret = hashes.Hash(hashes.SHA256())
combined_secret.update(rsa_secret)
combined_secret.update(kyber_secret)
final_secret = combined_secret.finalize()
return {
'rsa_ct': rsa_ciphertext,
'kyber_ct': kyber_ciphertext,
'secret': final_secret
}
# Usage example
hybrid_kem = HybridKEM()
result = hybrid_kem.encapsulate()
print(f"Hybrid shared secret: {result['secret'].hex()}")
print("✅ Secure against both classical and quantum attacks!")
Module-lattice-based key encapsulation mechanism for secure key exchange.
Lattice-based digital signature standard for authentication and non-repudiation.
Stateless hash-based signature scheme with strong security guarantees.
International standard for post-quantum cryptographic algorithms.
European technical specifications for quantum-safe implementations.
German Federal Office guidelines for post-quantum cryptography.