🏠 Back to Home

🗣️ Computational Linguistics & NLP

Natural language processing, computational semantics, language modeling, and text analysis. Covers tokenization, parsing, sentiment analysis, named entity recognition, and transformer models with Python implementations.

🔄 NLP Processing Pipeline

1

Text Preprocessing

Cleaning, tokenization, and normalization of raw text data

2

Feature Extraction

Converting text to numerical representations (TF-IDF, embeddings)

3

Model Training

Training ML models on processed linguistic features

4

Evaluation

Testing model performance on validation datasets

5

Deployment

Implementing models in production applications

Core NLP Concepts

🔤

Text Preprocessing

Essential techniques for preparing raw text data for analysis and machine learning models.

  • Tokenization and sentence segmentation
  • Stop word removal and filtering
  • Stemming and lemmatization
  • Text normalization and cleaning
  • Handling special characters and encoding
🏷️

Part-of-Speech Tagging

Grammatical analysis and syntactic parsing of text to understand linguistic structure.

  • POS tagging algorithms
  • Named Entity Recognition (NER)
  • Dependency parsing
  • Constituency parsing
  • Grammatical role identification
💭

Sentiment Analysis

Understanding emotional tone, opinions, and attitudes expressed in text data.

  • Polarity classification
  • Emotion detection
  • Aspect-based sentiment analysis
  • Opinion mining techniques
  • Subjectivity analysis
🔀

Text Classification

Automated categorization of documents and text into predefined classes or topics.

  • Document classification
  • Topic modeling (LDA, BERT-Topic)
  • Spam detection
  • Language identification
  • Intent recognition
🔗

Information Extraction

Extracting structured information from unstructured text documents.

  • Entity extraction
  • Relationship extraction
  • Event extraction
  • Knowledge graph construction
  • Template filling
🤖

Language Generation

Creating human-like text using various generative models and techniques.

  • Text summarization
  • Language translation
  • Dialogue systems
  • Content generation
  • Question answering

NLP Tools & Libraries

NLTK
Natural Language Toolkit
spaCy
Industrial-strength NLP
Transformers
Hugging Face library
PyTorch
Deep learning framework
TensorFlow
ML platform
Gensim
Topic modeling
TextBlob
Simple text processing
Stanford NLP
Stanford CoreNLP toolkit

Code Examples

Text Preprocessing with NLTK

Python - Text Preprocessing Pipeline
import nltk import re from nltk.corpus import stopwords from nltk.tokenize import word_tokenize, sent_tokenize from nltk.stem import WordNetLemmatizer from nltk.chunk import ne_chunk from nltk.tag import pos_tag class TextPreprocessor: def __init__(self): # Download required NLTK data nltk.download(['punkt', 'stopwords', 'wordnet', 'averaged_perceptron_tagger', 'maxent_ne_chunker', 'words']) self.stop_words = set(stopwords.words('english')) self.lemmatizer = WordNetLemmatizer() def clean_text(self, text): """Clean and normalize text""" # Remove HTML tags text = re.sub(r'<[^>]+>', '', text) # Remove special characters and digits text = re.sub(r'[^a-zA-Z\s]', '', text) # Convert to lowercase text = text.lower() # Remove extra whitespace text = re.sub(r'\s+', ' ', text).strip() return text def tokenize_and_preprocess(self, text): """Complete preprocessing pipeline""" # Clean text clean_text = self.clean_text(text) # Tokenize tokens = word_tokenize(clean_text) # Remove stop words and lemmatize processed_tokens = [ self.lemmatizer.lemmatize(token) for token in tokens if token not in self.stop_words and len(token) > 2 ] return processed_tokens def extract_entities(self, text): """Extract named entities""" tokens = word_tokenize(text) pos_tags = pos_tag(tokens) entities = ne_chunk(pos_tags) named_entities = [] for chunk in entities: if hasattr(chunk, 'label'): entity = ' '.join([token for token, pos in chunk.leaves()]) named_entities.append((entity, chunk.label())) return named_entities # Usage example preprocessor = TextPreprocessor() sample_text = """ Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret and manipulate human language. Apple Inc. and Google are leading companies in this field. """ # Preprocess text processed_tokens = preprocessor.tokenize_and_preprocess(sample_text) print("Processed tokens:", processed_tokens) # Extract named entities entities = preprocessor.extract_entities(sample_text) print("Named entities:", entities)

Sentiment Analysis with Transformers

Python - BERT-based Sentiment Analysis
from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline import torch import numpy as np class SentimentAnalyzer: def __init__(self, model_name="cardiffnlp/twitter-roberta-base-sentiment-latest"): """Initialize sentiment analysis model""" self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForSequenceClassification.from_pretrained(model_name) # Create pipeline for easy inference self.sentiment_pipeline = pipeline( "sentiment-analysis", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1 ) def analyze_sentiment(self, text): """Analyze sentiment of a single text""" result = self.sentiment_pipeline(text) return { 'label': result[0]['label'], 'confidence': result[0]['score'] } def batch_analyze(self, texts): """Analyze sentiment for multiple texts""" results = self.sentiment_pipeline(texts) return [ { 'text': text, 'label': result['label'], 'confidence': result['score'] } for text, result in zip(texts, results) ] def detailed_analysis(self, text): """Get detailed sentiment scores""" inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = self.model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) labels = ['NEGATIVE', 'NEUTRAL', 'POSITIVE'] scores = predictions.cpu().numpy()[0] return {label: float(score) for label, score in zip(labels, scores)} # Usage example analyzer = SentimentAnalyzer() # Sample texts for analysis sample_texts = [ "I love this new AI technology! It's amazing.", "The weather is okay today, nothing special.", "I hate when my computer crashes during important work." ] # Analyze individual text result = analyzer.analyze_sentiment(sample_texts[0]) print(f"Sentiment: {result['label']} (confidence: {result['confidence']:.3f})") # Batch analysis batch_results = analyzer.batch_analyze(sample_texts) for result in batch_results: print(f"Text: {result['text']}") print(f"Sentiment: {result['label']} ({result['confidence']:.3f})\n") # Detailed analysis detailed = analyzer.detailed_analysis(sample_texts[0]) print("Detailed sentiment scores:", detailed)

🤖 Language Model Comparison

Model Type Parameters Best Use Cases Strengths
BERT Encoder-only 110M - 340M Classification, NER, Q&A Bidirectional context
GPT-3/4 Decoder-only 175B - 1T+ Text generation, completion Few-shot learning
T5 Encoder-decoder 60M - 11B Text-to-text tasks Unified framework
RoBERTa Encoder-only 125M - 355M Improved BERT tasks Better training procedure
ELECTRA Encoder-only 14M - 335M Efficient pre-training Sample efficiency

Real-World Applications

💬

Chatbots & Virtual Assistants

Conversational AI systems that understand natural language and provide intelligent responses.

🌐

Machine Translation

Automatic translation between different languages using neural machine translation models.

📧

Email Filtering

Automated spam detection, email categorization, and priority classification systems.

📊

Social Media Monitoring

Brand sentiment analysis, trend detection, and social listening applications.

📝

Content Moderation

Automatic detection of inappropriate content, hate speech, and policy violations.

🔍

Information Retrieval

Search engines, document retrieval, and question-answering systems.

📰

News Analysis

Automatic summarization, fact-checking, and news categorization systems.

🏥

Healthcare NLP

Medical text analysis, clinical note processing, and diagnostic assistance.

Advanced Topics

🧠

Transfer Learning

Leveraging pre-trained models for domain-specific applications and fine-tuning techniques.

  • Pre-trained model adaptation
  • Fine-tuning strategies
  • Domain adaptation
  • Few-shot learning
  • Model distillation
🔄

Attention Mechanisms

Understanding transformer architecture and self-attention for modern NLP models.

  • Self-attention mechanisms
  • Multi-head attention
  • Positional encoding
  • Transformer architectures
  • Attention visualization
🎯

Multimodal NLP

Combining text with other modalities like images, audio, and video for richer understanding.

  • Vision-language models
  • Speech-text integration
  • Multimodal transformers
  • Cross-modal retrieval
  • Video understanding
🌍

Multilingual NLP

Processing multiple languages and cross-lingual transfer learning approaches.

  • Multilingual BERT
  • Cross-lingual embeddings
  • Zero-shot transfer
  • Language identification
  • Code-switching handling

Evaluation Metrics

📏

Classification Metrics

Standard metrics for evaluating text classification and sentiment analysis models.

  • Accuracy, Precision, Recall
  • F1-score and macro/micro averages
  • Confusion matrix analysis
  • ROC curves and AUC
  • Matthews correlation coefficient
📊

Generation Metrics

Metrics for evaluating text generation quality and coherence.

  • BLEU score for translation
  • ROUGE for summarization
  • Perplexity for language models
  • BERTScore for semantic similarity
  • Human evaluation protocols